Tree-Cut for Probabilistic Image Segmentation
نویسندگان
چکیده
This paper presents a new probabilistic generative model for image segmentation, i.e. the task of partitioning an image into homogeneous regions. Our model is grounded on a mid-level image representation, called a region tree, in which regions are recursively split into subregions until superpixels are reached. Given the region tree, image segmentation is formalized as sampling cuts in the tree from the model. Inference for the cuts is exact, and formulated using dynamic programming. Our tree-cut model can be tuned to sample segmentations at a particular scale of interest out of many possible multiscale image segmentations. This generalizes the common notion that there should be only one correct segmentation per image. Also, it allows moving beyond the standard single-scale evaluation, where the segmentation result for an image is averaged against the corresponding set of coarse and fine human annotations, to conduct a scale-specific evaluation. Our quantitative results are comparable to those of the leading gPb-owt-ucm method, with the notable advantage that we additionally produce a distribution over all possible tree-consistent segmentations of the image. The image segmentation problem can be formalized as partitioning an image into a set of nonoverlapping regions so that each region is (in some sense) homogeneous. Mathematically, this can be expressed in terms of an objective function
منابع مشابه
A survey of graph theoretical approaches to image segmentation
Image segmentation is a fundamental problem in computer vision. Despite many years of research, general purpose image segmentation is still a very challenging task because segmentation is inherently ill-posed. Among different segmentation schemes, graph theoretical ones have several good features in practical applications. It explicitly organizes the image elements into mathematically sound str...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملPlant Classification in Images of Natural Scenes Using Segmentations Fusion
This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملProbabilistic Atlas Based Segmentation Using Affine Moment Descriptors and Graph-Cuts
We show a procedure for constructing a probabilistic atlas based on affine moment descriptors. It uses a normalization procedure over the labeled atlas. The proposed linear registration is defined by closed-form expressions involving only geometric moments. This procedure applies both to atlas construction as atlas-based segmentation. We model the likelihood term for each voxel and each label u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1506.03852 شماره
صفحات -
تاریخ انتشار 2015